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Synopsis 

The method consists of a comparison between experimental data and Graessley’s theoretical 
function of the dependence of viscosity of concentrated polymer solutions and melts on the 
velocity gradient in a linearized plot using a three-parameter empirical equation. The pro- 
cedure is objective and allows the use of a computer. 

INTRODUCTION 

The paper reports a new procedure for the analysis of experimental data 
on the non-Newtonian viscosity of concentrated polymer solutions and melts 
using Graessley’s theoretical function. According to Graessley’s theory1p2 
based on the dynamic equilibrium between the formation and decay of 
entanglements of macromolecules in flow, the viscosity of a system, q, at 
a given velocity gradient y is a function of the concentration of entangle- 
ments and time T~ needed for their formation, with the concentration of 
entanglements decreasing with increasing velocity gradient. The theory 
gives the dependence of q/qo, which expresses the relative decrease in vis- 
cosity (qo is viscosity at y = 0) on the dimensionless parameter p = T ~ Y /  

2. For a monodisperse polymer the dependence is reported in the form of 
an explicit relation; for various polydispersities of molecular weights tab- 
ulated values are available.2 

The time constant 7 0  (relaxation time) is a characteristic of the non- 
Newtonian behavior of a system and a criterion of viscoelasticity, and de- 
pends on the structure of macromolecular entanglements. Usually, it is 
determined by comparing the plot of experimental data log q vs. log y with 
the theoretical dependence log (q/qo) vs. log p using the horizontal dis- 
placement needed for them to ~oinc ide .~ .~  The value of qo can be determined 
from the vertical displacement. These graphic methods are not too exact, 
however, because visual evaluation of the best fit of these plots, especially 
if the range of the gradients is narrow, is not unambiguous as a rule. The 
procedure reported in this study is more objective, allowing the T~ and qo 
values to be obtained by computerizing the results. 

THE PROPOSED METHOD 
In our procedure experimental data are compared with Graessley’s the- 

oretical function in a linear plot by means of a modified three-parameter 
empirical equation, formerly used in the evaluation and comparison of the 
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non-Newtonian dependence of intrinsic viscosity of polymer solutions on 
the velocity gradient under various condition~.~-l~ We found that this equa- 
tion in the form 

(where q,, a, and b are parameters of the equation) may be employed within 
a wide range of medium and high velocity gradients also for the absolute 
viscosity of concentrated solutions and melts. The parameter q, equals vis- 
cosity at y = 0 and, as is shown below, will be used as an adjustable 
parameter. The parameter a is related with the limiting viscosity value, 
qm, at y = 00 according to 

Since the dependence of viscosity on the velocity gradient has a point of 
inflexion (Fig. l), and eq. (1) represents hyperbolas monotonically decreasing 
to the limit, the dependence cannot-like dilute solutions-be used to de- 
scribe the region of low velocity gradients from the very beginning, where 
the viscosity is usually constant (plateau of the first Newtonian region) or 
varies very little, down to the point of inflexion. If the real viscosity value 
at y = 0 is substituted for q, (i-e., qx = qo), the equation somewhat fails, 
even in the region beyond the point of inflection (Fig. 2, curve 1). This 
shortcoming has been removed by replacing 7, with qj+, which corresponds 
to the optimal plot of experimental points through an empirical curve from 
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Fig. 1. Graessley’s theoretical dependence of q/qo on parameterp for MJM,  = 1.09. Broken 

line: optimal plot of the theoretical dependence through empirical function (6) in the region 
beyond the point of inflexion (cf. Table 11). 
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Fig. 2. Plot p l [ l  - (q/qo)/(q/qo)x] vs. p for Graessley’s theoretical function in Figure 1: 
(0) (q/qdz = 1; (0) (q/qJl = (q/qo)+ = 1.117. 

the point of inflexion to higher velocity gradients (9, = qo+ > qo). Equation 
(1) thus modified, 

very adequately expressed the gradient dependence of viscosity, starting 
already from the point of inflexion. Its rearrangement gave the relation 

according to which the plot y/(l  - q/qo+) vs. y was linear, with the slope 
a and the intercept b; qo+ was obtained by the optimization of this plot (Fig. 
2, curve 2). 

Graessley’s theoretical dependence, q/qo vs. p ,  also has an inflection. If 
we want to describe it by eq. (11, the parameter (q/qo)+ = qo+/qo > 1 must 
be introduced, so that 

After rearrangement and substitution for y = 2 p / ~ , ,  the relation 

is obtained. The reference value (q/qo)+, slope a’, and intercept b ’ ~ ~ / 2  = 
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q are obtained by employing a similar procedure as in the treatment of 
experimental results, i.e., by optimization of the linear dependence p /  
[(l - (q/qO)/(q/qO)+] vs. p.  Table I gives the (q/qo)+, a’, and q values obtained 
by optimization of the plot of tabulated Graessley’s theoretical data2 using 
relation (6) for various widths of molecular mass distribution. It can be seen 
that the accuracy of approximation of the theoretical function by means 
of an empirical equation is very good (Table 11). As the theory is based on 
the assumption that the residual viscosity of solution or melt at y = w is 
zero (qm = 01, i.e., the system is completely deformable, and viscosity of the 
solvent is negligible, in the case of an ideal approximation of the theoretical 
function by the empirical equation the parameter a would be unity. Due 
to these dependences not being completely identical, the a values thus 
obtained slightly depart from unity. 

Coincidence of the curves expressed in terms of the empirical equation 
(1) for experimental points and of eq. (5) for the theoretical function assumes 
equality of the constants a = a’ and b = b’. If the parameters q and b are 
known, the relaxation time can be expressed by 

For polymer solutions, and sometimes also for melts with a lower mo- 
lecular mass, the q m  values are sometimes nonzero. In such case the pa- 
rameter a in eq. (1) is higher than unity. The conditions for experimental 
results and the theoretical function may be unified13 by expressing the 
relative decrease in viscosity in eq. (4) at a = 1 through (q - q,)/(q$ - 
q,) instead of using q/qo+ according to 

The parameter b required for the calculation of ro can then be obtained as 
an intercept of the linear plot y/[l  - (q - qm)/(qo+ - qm)] vs. y, or better, 
without the necessity of knowing q,, from the linear plot y/(l - q/q$) vs. 
y by dividing the obtained intercept bq$/(qo+ - q,) by the slope q$/ 
(qo+ - q,), as ensues from the rearranged eq. (81, 

TABLE I 
Parameters of Empirical Equation (6) for Graessley’s Theoretical Function at Various 

Polydispersity of Molecular Weights 

~~ ~~~~~ 

2 1.029 1.072 0.552 
1.5 1.045 1.072 0.716 
1.16 1.072 1.036 1.079 
1.09 1.117 1.033 1.119 
1 1.242 1.024 1.097 
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TABLE I1 
Comparison Between ( q / q o ) G  Values of Graessley’s Theoretical Function and (q/qO), Values 

Calculated Using Eq. (6) 

MJM,, = 2 MJM, = 1.09 MJM. = 1 

P (l)/l)o)c (1)/1)dC P (1)/1)0)G (1)/1)0)< P (1)/l)o)c ( l ) / l ) o ) c  

0.055 0.939 0.936 0.213 0.938 0.939 0.411 0.905 0.905 
0.115 0.843 0.853 0.444 0.808 0.802 0.951 0.675 0.671 
0.253 0.692 0.713 0.975 0.600 0.604 2.18 0.425 0.428 
0.583 0.512 0.519 2.24 0.385 0.388 6.76 0.197 0.195 
1.40 0.343 0.327 5.32 0.222 0.218 13.4 0.119 0.119 
3.45 0.210 0.194 12.9 0.119 0.119 
8.66 0.120 0.123 

Since the q,o+ values for experimental data and (q/qo)+ for the theoretical 
function are related by 

1 

the real viscosity of the polymer system at zero velocity gradient can be 
calculated by merely dividing both reference values: 

VERIFICATION OF THE METHOD 

The procedure for obtaining T~ and qo values suggested by us was checked 
by using results of measurements of the gradient dependence of viscosity 
of the melt of four polystyrene samples reported by Stratton14 and treated 
by the method of displacement of logarithmic plots in a paper by Graessley 
and Segal.3 Similarly to these authors, we compared experimental data with 
the theoretical function calculated for the width of molecular weight dis- 
tribution with MJM,  = 1.09. 

The parameters a, b, and qof obtained by optimization of these data 
according to eq. (2) were caluclated by using relations (7) and (11) to T~ and 
qo (Table 111). Since the values of parameter a were also close to unity in 

TABLE I11 
Comparison Between the T~ and q0 Values for the Polystyrene Melt14 Obtained by a 

Displacement of Logarithmic Plots3 (I) and by Our Method (11) 

q o  x 10-2 To X 103 
(Pa s) (S) M x 10-3 l)o x 10-2 b 

Sample (g mol-1) (Pa s)  a (s-9 I 11 1 11 

S 103 117 29.1 1.02 49.3 25.7 25.8 47 41 
s 109 179 112.7 1.004 10.5 109 109 230 230 
s 111 217 214 1.0007 6.3 190 190 374 373 
s 108 242 289 1.001 3.28 295 289 700 682 
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this case (qw A 01, the comparison between experimental data and the 
theoretical function appeared to be justified. It can be seen that the results 
are comparable with those obtained by the original Graessley’s method. 
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